News for Dynamic Disc Designs which includes updated research and a synthesis of the most updated studies to help efficiently engage with patients and their back and neck pain.

We take an approach that an evidence-based practitioner would take. Carefully dissecting the history of a patients complaints, weaving the mechanical and psychosocial factors and then deliver a rational and tangible approach to relieving the back pain to the patient. Our news helps keep the practitioner abreast of the latest publications related to musculoskeletal health.

At our headquarters, we dedicate weekly hours to comb through the research for those who treat back pain and neck pain and deliver it.

intradiscal, endplate

A study 1 on the efficacy of intradiscal biologic therapy, where new cells or genes are implanted into the degenerated disc matrix to reduce inflammation and increase matrix cell production, found that degenerated discs may not have the necessary nutrient transport capabilities to ensure proper disc nutrition during this form of therapy. The authors of the study emphasize the importance of research into the determining factors influencing disc cell nutrient transport in informing targeted treatments and strategies to improve disc nutrition in degenerated discs.

What’s at Stake?

Disc degeneration (DD) is a chronic condition that causes spinal pain in aging adults worldwide. The process of DD involves biomechanical modeling of the entire disc matrix and frequently leads to surgical intervention to remove the offending disc and restore functionality to the spine. For many patients, surgical procedures are unsuccessful, however. A noninvasive treatment that has demonstrated recent promise involves regenerating the DD by injecting it with genes, growth factors, small molecules, or implanted cells. These procedures are intended to reduce inflammation and catabolism and assist in the creation of a new disc matrix. But a cell-rich disc requires increased nutrients, and the cartilage endplate (CEP) of the DD may not have the capacity to deliver these nutrients to the matrix. In this study, researchers examined the effects of CEP transport properties in DD on nutrient diffusion and cell function and survival.

The Study

In order to isolate the variable of how nutrient supply affects the nucleus pulposus (NP) cell function, the researchers involved in this study mimicked the in vivo, diffusion-poor disc environment by creating diffusion chambers with similar parameters to isolate the NP nutrient supply mechanics. The cells of the NP receive nutrients that are diffused through the CEP matrix. Cells at the center of the lumbar discs can be up to 10mm from a capillary, while other cells can be just beside a CEP.

Researchers provided glucose and oxygen to cultured NP cells within the chambers. These nutrients were delivered through diffusion from human CEP’s from the open sides of the chamber. Metabolites were expelled into the culture medium by CEP diffusion. The functioning and survival of the cells require a balance between CEP transport properties and cell density, allowing for the request and supply of nutrients. The researchers reproduced the disc matrix environment and physiologic transport conditions in their CEP tissue cultures and diffusion chambers to monitor the effects of NP cell viability and gene expression across the different conditions of nutrient transport.

Specifically, intact human CEP’s from human cadaveric lumbar spines were used for the study. Full-thickness samples of the CEP’s and surrounding calcified cartilage were frozen and sectioned. The researchers calculated the diffusivity of each full-thickness CEP sample through fluorescence and photo-bleaching and using the Axelrod method. They measured each CEP’s biochemical composition spatially via imaging. They created special maps of the collagen, aggrecan, and mineral-to-matrix ratio of the CEP samples with the highest and lowest diffusivities. They measured CEP thickness with photomicrographs and then determined the average measurement across the five chambers.

Bovine NP cells were used in the study (similar to human NP cells). Post-incubation cell viability was determined using a cytotoxicity assay involving gel-stains and low-magnification imagery. Each L4-L5 donor CEP was analyzed for cell density and the anabolic and catabolic gene expressions were examined after chamber incubation. A regression model of fluorescence intensity was used to determine the NP cell gene expression and distance from the CEP. Spatial fluctuations of the CEP composition were described based upon regression models.


The diffusive transport of nutrients varied widely between the CEP samples, affecting the function, health, and survival potential of the NP cells. In fact, there was a four-fold variation in small solute diffusivity in our human CEP sample array. Those allowing less diffusive transport reduced the supply of nutrients to the NP and shortened the viable distance within the diffusion chambers up to 51 percent with typical cell density. Those permitting poor diffusion seemed to downregulate anabolic and catabolic NP cell gene expression. This may mean that a reduced number of disc cells are capable of being sustained through low nutrient CEP diffusion, and the cell’s ability to retain its matrix homeostatic condition is hindered.

When we increased cell density, there was a reduction in cell viability caused by the CEP transport properties, though increasing cell density should raise nutritional demands and shorten the viable distance.  The CEP’s in our study that exhibited low diffusive transport were unresponsive to doubling the cell density, perhaps because they did not provide enough nutrient diffusion to nurture the cell.

We imaged the CEP’s to identify any differences between those with low or high intradiscal diffusivity. Our data found that those with low-diffusivity (and shortened viable distance) contained more collagen and aggrecan, mineral, and lower cross-link maturity. This could explain the blockage of solute penetration and diffusion. At any rate, there appears to be a strong correlation between NP cell survival or function and the availability and mobility of the nutrient supply in the CEP. Compositional defects with the CEP matrix can inhibit nutrient diffusion and undermine biologic therapies that depend upon an increased supply of nutrients to the cell matrix to succeed.


Our findings suggest that the composition of CEP can contribute to or detract from the function and viability of NP cells. Deficits within the CEP matrix can cause poor nutrient diffusion and block solute passages. This can cause an abundance of collagen and aggrecan, as well as mineral, and lower cross-link maturity. When cell density is increased, CEP’s developed transport deficits, decreasing the cell’s viability. It appears NP function and survival are dependent on the proper CEP composition, as an imbalance in this makeup can reduce the supply of nutrients to the cells, reducing the success rates of biologic therapies.


intensive patient education, pathoanatomy

This study 1 published in JAMA (Neurology), randomly selected 202 acute low back pain patients to compare pain education to non-pain education. The results demonstrated not much difference between the groups.

The Methods

Participants engaged with their common physician and in addition to this familiar interaction, each participant was then randomly partitioned into two groups. Each of these groups experienced, in addition to the advice and interaction of their physician, an additional two x hour sessions of either:

Group 1: Normal engagement with doctor PLUS intensive one on one patient education (delivered by clinical psychologist in pain management (M.K.N.) trained) for an additional 2 (1hr) sessions. This patient education was delivered based on Butler’s and Moseley’s work. 2

Group 2: Normal engagement with doctor PLUS placebo patient education (delivered by the same clinical psychologist) for an additional 2 (1hr) sessions. Participants in the placebo patient education group received no information, advice, or education about low back pain from the trial clinician. Participants were encouraged to talk about any topic that they desired.

The Results

Retention rates remained high for both groups at ninety percent. Intensive patient education was not more effective than placebo patient education at reducing pain intensity at the three months. There was a small effect of utilizing intensive at one week and at three months but not at six or twelve months.



In this study, patient education was used through a psychological framework model rather than a biomechanical model. It is important to understand that this study does not mean that patient education is ineffective or as effective as a placebo. This patient education angle does not attempt to help patients understand the cause of their pain. This approach is more of a top-down psychological strategy of patient education. Methods to subclassify these acute low back pain patients into specific biomechanical categories and then, offer those patients specific education and movement strategies would be helpful to study as groups within the acute low back pain group. These sub-groups could then be compared to placebo.


At Dynamic Disc Designs, we believe that empowering patients with a greater sense of self-awareness on the probable mechanical cause of the acute low back pain can be helpful in the management. Initially, pain-reducing strategies through movement awareness of painful structures should be prompt and focus on reducing nociceptive inflammation for the patient. Following the acute phase of low back pain, professionals using our dynamic disc models can further promote the physical awareness of specific postures to help prevent the recurrence and avoid a progression of the condition. Our models allow the practitioner to explain patho-anatomy in a patient-friendly way that does not induce fear avoidance behaviours for the long term.  They also enable the practitioner to provide a realistic forecast of the temporal biological adaptation process within the degenerative cascade framework of natural ageing with a dynamic 3d model. In other words, our dynamic disc models assist the patient engagement process with the opportunity to bring up anatomy in a non-scary and empowering way. We look forward to more research on this topic.



3d modeling, endplate lesion

An October 2018 study compared MRI’s of 966 lower back pain (LBP) patients to introduce a simplified, reliable method of classification for common endplate lesions. The study also noted associations between endplate lesions and variables, including age, rate of disc degeneration, sex, and Modic changes. The researchers then demonstrated the new system’s reliability by repeated observational rating over a period of days, using outside raters evaluating a percentage of the total sample results. The demographic and physiological findings of the study were largely in agreement with previous IVD endplate lesion studies but also added novel findings that had not previously been published.

basivertebral nerve, bone marrow edema, modic changes

Modic vertebra model- midsagittal cut exposing the basivertebral nerve.

The Study

The subjects in the study were all LBP sufferers under the age of 70, excluding patients with a history of back surgery, spondylodiscitis, or vertebral fractures. Data including age and sex were collected on all patients, and images were scanned and evaluated by an experienced radiologist.

A scoring and classification system for the Lumbar IVD spaces was noted on the images, with the descriptions:

  • Normal—Physiological curvature of both endplates, without the detection of any visual lesions in any of the sagittal MRI IVD space slices.
  • Wavy/Irregular—Curvature in at least one of the endplates, without detectable IVD lesions.
  • Notched—The presence of at least one circular small or V-shaped lesion on an MRI saggital slice.
  • Schmort’s Node—Clearly evident vertebral endplate deep focal defect, where the endplate is rounded, with a smooth margin
  • Fracture—Thickened bone fragment at the edge of an endplate, or any evident fracture of the endplate with similarly-sized fragments

A sampling of the image data was also evaluated multiple times over a period of two days by independent raters to ensure observer reliability. To determine how often each type of endplate lesion appeared associated with disc degeneration and alterations of the MRI signals, subgroups of the study subjects were created, and comparisons were made based on age and sex. A scatter-plot chart was created to track Modic changes, and the relative percentages were calculated and identified against an established threshold.



The findings indicated minimal association between patient age at the time of the scan and disc degeneration, as well as minimal Modic changes in older patients, as opposed to entire population studied. The most common types of endplate lesion observed were the “notched” and “Schmorl’s Node” type lesions, and both were more common in male patients than in females. Few of the patients studied had “Wavy/irregular” or “fracture” lesions, which occurred in nearly equal numbers of male and female subjects.

There was a strongly evident correlation between disc degeneration and endplate defects across all LBP subjects in the study. All lesion types increased in all IVD levels where disc degeneration was evident. There was a significant increase in “wavy/irregular” endplate types whenever severe disc degeneration was present. This can be considered a reliable marker for the process of extreme disc degeneration.

Signal alterations were found to be associated with endplate lesions, specifically in “notched,” “wavy/irregular,” and “Schmorl’s Node” endplates. There were nearly twice as many notches in Modic changes of types 1 or 2 corner signal alterations. Schmorl’s nodes showed even more evidence of association.



Though this study was conducted with the intention of developing a reliable method of endplate defect classification in LBP patients and to find correlations in the distribution of LBP by analyzing a large population of subjects via MRI, previous studies have indicated a correlation between back pain and lesions—something this study did not specifically address.

The results of this study agreed with previous studies that indicated male LBP patients are more likely to have IVD lesions than female patients, though similar lesion-levels were observed in male and female patients who showed evidence of severe disc degeneration, as is found in Schmorl’s nodes and in those with disc fractures.

Most of the patients showed no evidence of endplate lesions on the lumbar MRIs. Of those who who did have lesions, most (18.7 %) experienced them only in a single IVD level, and males were more likely than females (20.7 % to 16.7 %) to show evidence of lesions. Progressively fewer subjects had lesions involving more IVD levels.

There was a very slight correlation between age and lesions in this and some previous studies. That correlation appears to be stronger in the female LBP population than in males—a new observation that has not been discussed in previous studies.

The association between endplate defects and disc degeneration was evident, especially where “wavy/irregular” endplates occurred, indicating severe degeneration of the discs. Signal alterations and endplate lesions also showed a positive correlation, specifically in “wavy/irregular,” “notched,” endplates. This association was significantly evident in Schmorl’s nodes.


Lower back pain (LBP) patients present with a wide variety of motor control adaptations in response to, and in anticipation of pain. Though these adaptations manifest across a spectrum of functionality, studies have indicated two common phenotypes that represent the trunk posture and movement of most LBP patients. Further study 1 of these two phenotypes can help practitioners target more specific, effective treatments for their patients who have developed motor control adaptations that may undermine and contribute to their long-term spinal health.


Variations of Motor Control Adaptations in LBP Patients

People with LBP adapt the way they move to mediate pain or avoid pain. These adaptations may be conscious or unconscious processes, or a combination of the two, but the changes in posture and movement—what we refer to as “motor control”—involve the muscles, joints, nerves, senses, and integrative processes. Studies of how LBP affects posture and motor control have been inconsistent in the conclusions, perhaps because of the built-in redundancy and flexibility of the musculoskeletal system.

There are many ways to adapt posture and movement in response to pain or in anticipation and avoidance of pain. But because each adaptation creates not only short-term solutions, but potential long-term changes in biomechanics, which can become problematic, creating a cycle of disfunction, it is helpful to study the two most prominent phenotypes of motor function adaptions to create targeted treatment and information options for LBP patients presenting these adaptations.

Identified Motor Function Phenotypes

Tight Control: Some LBP patients exhibit increased excitability and accompanying tight control over their trunk movements, which increases reflex gains, attention to how they control movement, tissue loading, and muscle contraction. While having tight control over trunk movements can help the LBP sufferer from short-term injury by constraining movement, it may also contribute to trunk stiffness and increase the amount of force necessary to move. This may manifest in subtle ways or, in extreme cases, lead to a complete bracing of the trunk, making movement difficult and leading to fatigue.

Patients with extreme tight control over their motor control have been shown to experience a reduction in lumbar stiffness and pain after spinal manipulation. This could mean that the adaptation could, itself, be responsible for pain. These patients are also more likely to experience spinal compression due to increased loading. This compression may lead to a reduced fluid flow in the discs, which may contribute to degeneration over time.

Tight control creates low-level muscular activity, even when the spine is at rest. This can create muscle fatigue, pain, and discomfort. The lack of muscle variability and reduced movement associated with tight control of motor function may also compromise tissue health and compromise the load-sharing capabilities, balance, and movement task learning abilities inherent in the body’s structures.

Loose Control: At the opposite end of the spectrum are patients with loose muscle and posture control and less muscular excitability. This creates an increase in spinal movements and subsequent tissue loading. This may help prevent the short-term pain associated with muscle movement, but the spine is unstable and requires musculature to support movement. Less muscle control means potential failure of the mid-range lumbar vertebral alignment segments, which can cause tissue strain and pain. Spinal displacement due to loose control may cause LBP.


Clinical Implications for Loose or Tight Muscle and Posture Control in LBP

Understanding whether a LBP patient is exhibiting a loose or tight control muscle and posture adaptation in response to their pain can help practitioners tailor their treatment in a targeted and more beneficial way. Increasing movement and reducing excitability in later stages of LBP adaptive tight control models can help a patient integrate movement variation as their LBP improves. Likewise, exercises and therapies to help loose control patient models develop more control of their musculature and posture may help them avoid the potential long-term consequences of a proper lack of spinal support.

Assessing LBP patients carefully to identify their motor control phenotype prior to the onset of treatment may allow practitioners to more efficiently target and proactively treat potential complications of their particular adaptation due to actual or anticipated pain.

KEYWORD LONG TAIL PHRASES: motor control phenotyping may help target treatment for lower back pain patients, motor control adaptations in response to, and in anticipation of pain, common phenotypes that represent the trunk posture and movement of most LBP patients, two most prominent phenotypes of motor function adaptions, reduction in lumbar stiffness and pain after spinal manipulation.


arthritic changes, lumbar models, cervical models

Arthritic changes are very common. They are often related to a person’s pain with neck pain as one of the highest ranked common causes of disability. In this specific research article 1, the authors looked at the micro-details of neck synovial joints. With osteoarthritis known to be related to neck pain, they were looking to reveal higher anatomical detail and they were also curious about whether men or women have more of these problems.

With both neck and back pain being multifactorial (which may include both psychological and social aspects) degenerative changes within the synovial joints play a significant structural role with the development of spondylosis. This is a general term to describe a disorder of the musculoskeletal system with an emphasis on joint space narrowing, intervertebral disc height loss and frequent formation of bony spurs.

The architecture of the cervical facet joints is quite well known with most of the current knowledge around the smooth (or lack of smoothness) hyaline cartilage to allow the joint to receive and distribute loads in an efficient manner. However, there has not been much quantitative data revealing the anatomy under the hyaline cartilage designated as the subchondral bone. This bone under the cartilage (sub, meaning below and chondral, meaning cartilage) has been of recent interest as there exist nerves in this area that can cause pain. This is thought to be similar to the basivertebral nerve of the vertebral body. The innervation of the facet, however, has ascending fibres travelling through the posterior primary division which can be seen in this Medial Branch Dynamic Disc Model.


modeling hyaline cartilage, models

Hyaline Cartilage Modeling in our Professional and Academic LxH Dynamic Disc Models

basivertebral nerve lumbar model

Basivertebral nerve of a lumbar vertebra.

Previous research has shown that the thickness of the hyaline cartilage is .4mm in women and .5mm in men with the subchondral bone making up approximately 5% of the total cartilage thickness. It is also known that with increasing age the cartilage starts to flake off (called fibrillation) and researchers also coin the stripping of cartilage from the bone, denudation. This means being nude. A joint surface within a covering. Other terms used to describe the break down of the hyaline cartilage is erosion, fissuring and deformation. All in all, the terminology all mean that the hyaline is thinning.

arthritic changes, subchondral, joint, model

Subchondral thickening – arthritic changes

How did they do it?

These researchers looked at 72 recently deceased people and examined their joints. They used microscopes to look closely at the facet joints to help understand the pathogenesis of the arthritic changes.

When they observed the osteocartilaginous junction, the morphological changes included: flaking, splitting, eburnation, fissuring, blood vessel invasion and osteophytes. They looked at the length of the cartilage, the hyaline cartilage thickness, the calcified cartilage thickness and the subchondral bone thickness.

They found that males tended to have more severe degenerative changes described by flaking and severe fissures in the facet cartilage. Click To Tweet

Points of Key Interest

  • this was a study that looked at 1132 unique cervical spine facets from 72 humans
  • males were found to have more degenerative changes of the osteocartilaginous junction
  • the thickness of the calcified cartilage and subchondral bone increased with age whereas the hyaline cartilage decreased
  • the osteocartilaginous junction is particularly important in the pathogenesis of osteoarthritis in the cervical spine facet joints


At Dynamic Disc Designs, we work to bring research to the practitioner so when there is a teaching moment, Professionals are ready to explain pain triggers as they relate to a patients symptoms and movements. Empowering people about their own anatomy helps in the crafting of customized treatment plans for each unique pain patient. Explore our dynamic models and help a patient understand their arthritic changes and what that means to them.

A new study 1 sought to create an etiology-based system of classification by identifying and characterizing typical endplate irregularities and found that tidemark avulsions were a predominant pathology in the cadaveric spine sample images. This represents a previously unidentified observation and, along with the histologic classification system developed in the study, should assist practitioners in organizing their patients into categories that will help to diagnose, research, and treat their spine symptoms.


The Study

Researchers used magnetic resonance imaging (MRI) to analyze and categorize 15 donated human cadaveric spines from 11 males and four females between the ages of 49 to 67 years old. Each of the spine samples showed evidence of moderate to severe disc degeneration. Motion segments were excluded if they appeared with imaging to have experienced pre-mortem surgery, deformity, or fracture. No medical history about the donors was obtained.

Histological Observation

Spinal segments were extracted using a band saw, and their various features were stained with different colors for observation. Each of the sections were imaged with polarized lights under a microscope, and two raters developed a classification system to identify and record various focal tissue-scale endplate irregularities and their anatomical location.

Researchers noticed a novel histological phenomenon wherein there appeared to be a separation of the annulus from the vertebra at the tidemark (the insertion point of outer annular fibers into the calcified layer of cartilage). They immune-stained the “tidemark avulsions” to search for the 9.5 neuronal marker protein gene using a polymer detection system. Each of the slides was then analyzed to identify the presence or absence of nerves in the bone nearest the endplate irregularity.

endplate irregulariities, models

Models to help explain back pain as it relates to endplate irregularities.

MRI Analysis

Each spine was studied via MRI to identify the presence of absence of tidemark avulsions, and their location was noted. Two orthopedic specialist clinicians were used to assess the findings. These researchers—neither of whom was previously used as a rater— were blinded to the histologic findings.


The endplate irregularities were grouped into three categories based upon their features and location. They were then subcategorized to further classify their pathologies.

The categories and subcategories identified were:

  • Avulsions: There was a separation of the tissue at the place where the disc joined the vertebra. Two types of avulsions were observed—tidemark (separation occurring at the tidemark location, where outer annulus fibers join the layer of calcified cartilage, and CEP-bone avulsion—occurring where the bone meets the cartilage endplate (CEP).
  • Nodes: Traumatic nodes occurred when there was a herniation of the nuclear materials reaching through the endplate. When abnormal fibrocartilage ingrowth or bony erosions were found, the were classified as Erosive.
  • Rim degeneration: This classification was reserved for samples that showed loss of organization in the annular fiber, bone marrow alterations, or degradation of the bone-marrow interface.

Endplate Irregularity Observations

The most common irregularities noted were rim degeneration (50 %) and avulsions (35%). Nodes were less common (15%) and found mostly in the thoracic spine, where the avulsions and rim degenerations were found in the lumbar spine samples. Eighty-seven percent of the noted avulsions were found in the anterior discs.

Though linear regression showed little association between endplate irregularities and age, the largest number of tidemark avulsions (90%) were found in the oldest spine samples. Interestingly, the annular fibers in the tidemark avulsions appeared to change their direction after crossing the tidemark. Of the 35 discs that showed tidemark avulsions, 14 of them contained multiple avulsions. Marrow changes and increased innervation was noted along vertebral bones beside endplate irregularities. An increase of nerve density was observed even in bones adjacent to very small tidemark avulsions.


The ability to identify tidemark avulsions on MRI may help practitioners identify and treat disc-vertebra injuries in a targeted way. High density images in the study showed that fluid can collect around avulsion irregularities, potentially creating gas in the extra-cellular spaces surrounding thee separation. High-intensity regions in MRI may indicate disc delamination or potentially painful lesions.  It is possible that tidemark avulsions may create anterior widening and create a scenario wherein the disc may detach from the vertebra. Overall, the findings of this study should contribute to a beneficial system of classification, allowing clinicians to more effectively diagnose and treat their lower back pain patients.

KEYWORDS: endplate irregularities, tidemark avulsions, endplate pathologies, histologic classification system, separation of the annulus from the vertebra at the tidemark, CEP-bone avulsion, traumatic nodes, rim degeneration


A cross-sectional study 1of the multifidus muscles (MM) and erector spinae muscles of 68 women and 42 men found significantly higher levels of muscles in subjects without disc herniation than in the disc herniation group, indicating that chronic pressure on the root of the spinal nerve may cause degeneration and atrophy of the MM and erector spinae muscles groups.


Single-Level Disc Herniation

Model of Single-Level Disc Herniation.


The Study

110 LBP patients with an average age of 40 were analyzed and divided into two groups—those with single-level disc degeneration, and those without disc degeneration. Subjects with multilevel degeneration were excluded, as were those with deformities of the spine or a history of spinal surgeries. Both groups were radiographed via MRI at the lumbar levels, and the imaging results were compared to examine the paravertebral muscles, disc heights, and perpendicular distances between the laminae and MM. Statistical analysis using software compared the variables using the Kolmogorov-Smirnov test to investigate data distribution.


The LBP patients without lumbar disc herniation had clinically-significant greater MM and erector spinae muscles than those with radiographically-confirmed disc degeneration. No significant differences existed, however, in the disc heights, perpendicular distances between the MM and the laminae, or the psoas major cross-sectional areas of the two study groups.


The MM stabilizes the lumbar spine and, when negatively impacted, contributes to LBP. The muscle group create more force over a smaller range than the longer spine muscle groups, which helps to stabilize movement. The dorsal rami of the spinal nerves stimulates the MM and erector spinae, but the psoas major is stimulated by ventral rami lumbar spinal branches, prior to their joining the lumbar plexus. The medial paraspinal muscles are stimulated from one nerve root, but the iliocostalis and longissimus muscles receives stimulation from many roots. Indications of muscle degeneration include decreased muscle size and increased fat deposits in the area.

Because the MM and erector spinae are stimulated by the dorsal root stemming from a singular level, the chronic and long-lasting pressure on the root due to disc herniation contributes to the degeneration and atrophy of these muscles. This atrophy is not evident in the psoas muscle because it is stimulated by the nerves of many different levels, rather than a singular source. In order for muscle atrophy to occur, there must be at least six weeks of compression, according to this study’s authors.


Evidence of increased fatty deposits and decreased muscle in a cross-sectional lumbar image indicates the existence of muscle degeneration in LBP patients, assuming there has been at least six weeks of compression on the MM or erector spinae muscle groups, which are stimulated by a single nerve root.


KEYWORDS: Muscle Degeneration in LBP Patients with Single-Level Disc Herniation, single-level disc degeneration, paravertebral muscles, disc heights, and perpendicular distances between the laminae and MM, pressure on the root due to disc herniation contributes to the degeneration and atrophy of these muscles

  1. Volumetric Muscle Measurements Indicate Significant Muscle Degeneration in Single-Level Disc Herniation Patients