Patient engagement is at the core of a patient-centered approach to spine care. Spine professionals engage with their patients with different tools. We all use language but to enhance it, very often a physical model can support the words chosen to educate.

In the past, models have been static, so it made it very difficult to connect patient’s back and neck pain to the specific movements that cause the pain. At Dynamic Disc Designs, we have developed models to help the practitioner engage in a mechanical way through a better rendering of a motion segment. We have created a dynamic disc with the ability of the models to bulge or herniate. We have integrated a dynamic nucleus pulposus and a stiffer annulus fibrosus as well as added features of the ligamentum flavum to show how the facets are inter-related to one another.

Explore how a dynamic model can enhance the language one uses in a clinical setting of a musculoskeletal practice.

 

A 2018 study 1 of resting state functional magnetic resonance imaging (rs-fMRI) of the cervical spinal cord in fibromyalgia patients and control subjects found there was greater ventral and lesser dorsal Mean ALFF of the cervical spinal cord in patients with fibromyalgia, compared to the control group subjects. The results of the study may indicate that fibromyalgia patients experience enhanced sensitization of nerve responses that could be responsible, in part, for the discomfort and fatigue associated with the disorder.

What’s at Stake

Patients with fibromyalgia report the experience of physical pain throughout the body, as well as cognitive problems, fatigue, anxiety, and depression. The symptoms may be a result of irregularity of the central nervous system (CNS), including central sensitization and possibly a decreased ability to modulate pain responses. Signals to and from pain receptors may be misdirected or skewed in patients with fibromyalgia, creating an altered response to nociceptive and non-nociceptive signals.

Previous imaging studies have demonstrated altered CNS activity or structure and irregular brain activity in response to painful and non-painful stimuli in fibromyalgia patients.  Functional connectivity, networks, and low frequency oscillatory power have been measured through resting state functional magnetic resonance imaging (rs-fMRI), but these studies did little to elucidate the underlying CNS processes that occur in patients with fibromyalgia. Because of the complexity of the CNS signals in the spine, it was necessary to conduct a comparative rs-MRI of healthy controls and fibromyalgia patients to observe alterations of oscillatory frequencies, functional CNS connectivity, and analyze the graph metrics of the fibromyalgia patients.

The Study

The study subjects included 16 fibromyalgia patients whose symptoms met the American College of Rheumatology inclusion criteria for fibromyalgia and 17 healthy participants. Subjects with MRI contraindications, taking opioids for pain or mood-altering medications, and those with depression or anxiety disorder were excluded, as were pregnant or nursing females. All subjects were screened for MRI contraindications and filled out questionnaires regarding their psychological and behavioral state, diagnostic pain, sensory, and fatigue criteria prior to the study.  Further testing assessed the subjects’ sensory, pain, cold pressure response, mechanical hyperalgesia, and mechanical temporal responses.

Each of the subjects was queried regarding their levels of pain prior to, and after their fMRI scans, using a scale of 0 to 10 to grade their pain. Separate amplitude of low frequency fluctuations (ALFF) Measures of Mean were calculated for each study subject across all voxels of the cervical spine data. Normalized images were analyzed for differences, and the significance of the findings was assessed. Gray and white matter Mean ALFF was also analyzed and compared in the study groups. The functional organization and connectivity of spinal cord networks was also observed and compared in both study groups, as other studies have suggested that bilateral motor, sensory, and dorsal horn functional connectivity networks was altered during thermal stimulation in humans and after a spinal cord injury in non-human primates. The researchers in this study wanted to investigate if disrupted spinal cord processing and functional organization may be responsible for some symptoms of fibromyalgia.

 

Results & Conclusions

The fibromyalgia patients had higher measures of fatigue, sensory hypersensitivity, and widespread pain than the control group. Each of the fibromyalgia patients had right shoulder pain, and most experienced arm pain, undermining the research expectation that the patients’ sensitization would be central and found throughout the CNS as a result of their altered cervical spinal cord activity.

The ALFF spinal cord low frequency oscillatory power study indicated a greater Mean ALFF in the ventral hemi-cord of the fibromyalgia patients. The dorsal quadrants of fibromyalgia patients showed lesser Mean ALFF. Mean ALFF was higher in gray matter than in white matter in the patients.

Overall, the study demonstrated that the cervical spinal cord of the fibromyalgia patients had altered patterns of rs-fMRI low frequency power—greater regional Mean ALFF in the ventral, and lesser in the dorsal spinal cord. The most pronounced difference was noted inside a small cluster in the right dorsal quadrant, at the border between the dorsal horn gray and white matter. There was a strong correlation between levels of patient fatigue reported and the noted differences in Mean ALFF. These observations support the idea of regional differences in nociceptive and non-nociceptive CNS processing pathways in patients with fibromyalgia.

While there is a need for future study of local spinal cord modulatory circuits, these findings suggest that a combination of reduced CNS inhibition, coupled with an increase in dorsal horn excitation could be responsible for the irregular modulation of sensory and pain signals experienced by patients with fibromyalgia. Nociceptive signals might be over-transmitted by spinothalmic projection neurons, and/or a similar process could cause the under-transmission of non-nociceptive signals. Irregular spinal cord signal modulations (decreased, or increased) could increase or lessen signals of any type to any part of the body, which might explain the experience of uncomfortable hot or cold sensations in patients with fibromyalgia. There was also a very strong correlation between the Mean ALFF of the fibromyalgia patients and their fatigue symptom measures.

 

Lower back pain (LBP) patients present with a wide variety of motor control adaptations in response to, and in anticipation of pain. Though these adaptations manifest across a spectrum of functionality, studies have indicated two common phenotypes that represent the trunk posture and movement of most LBP patients. Further study 1 of these two phenotypes can help practitioners target more specific, effective treatments for their patients who have developed motor control adaptations that may undermine and contribute to their long-term spinal health.

 

Variations of Motor Control Adaptations in LBP Patients

People with LBP adapt the way they move to mediate pain or avoid pain. These adaptations may be conscious or unconscious processes, or a combination of the two, but the changes in posture and movement—what we refer to as “motor control”—involve the muscles, joints, nerves, senses, and integrative processes. Studies of how LBP affects posture and motor control have been inconsistent in the conclusions, perhaps because of the built-in redundancy and flexibility of the musculoskeletal system.

There are many ways to adapt posture and movement in response to pain or in anticipation and avoidance of pain. But because each adaptation creates not only short-term solutions, but potential long-term changes in biomechanics, which can become problematic, creating a cycle of disfunction, it is helpful to study the two most prominent phenotypes of motor function adaptions to create targeted treatment and information options for LBP patients presenting these adaptations.

Identified Motor Function Phenotypes

Tight Control: Some LBP patients exhibit increased excitability and accompanying tight control over their trunk movements, which increases reflex gains, attention to how they control movement, tissue loading, and muscle contraction. While having tight control over trunk movements can help the LBP sufferer from short-term injury by constraining movement, it may also contribute to trunk stiffness and increase the amount of force necessary to move. This may manifest in subtle ways or, in extreme cases, lead to a complete bracing of the trunk, making movement difficult and leading to fatigue.

Patients with extreme tight control over their motor control have been shown to experience a reduction in lumbar stiffness and pain after spinal manipulation. This could mean that the adaptation could, itself, be responsible for pain. These patients are also more likely to experience spinal compression due to increased loading. This compression may lead to a reduced fluid flow in the discs, which may contribute to degeneration over time.

Tight control creates low-level muscular activity, even when the spine is at rest. This can create muscle fatigue, pain, and discomfort. The lack of muscle variability and reduced movement associated with tight control of motor function may also compromise tissue health and compromise the load-sharing capabilities, balance, and movement task learning abilities inherent in the body’s structures.

Loose Control: At the opposite end of the spectrum are patients with loose muscle and posture control and less muscular excitability. This creates an increase in spinal movements and subsequent tissue loading. This may help prevent the short-term pain associated with muscle movement, but the spine is unstable and requires musculature to support movement. Less muscle control means potential failure of the mid-range lumbar vertebral alignment segments, which can cause tissue strain and pain. Spinal displacement due to loose control may cause LBP.

 

Clinical Implications for Loose or Tight Muscle and Posture Control in LBP

Understanding whether a LBP patient is exhibiting a loose or tight control muscle and posture adaptation in response to their pain can help practitioners tailor their treatment in a targeted and more beneficial way. Increasing movement and reducing excitability in later stages of LBP adaptive tight control models can help a patient integrate movement variation as their LBP improves. Likewise, exercises and therapies to help loose control patient models develop more control of their musculature and posture may help them avoid the potential long-term consequences of a proper lack of spinal support.

Assessing LBP patients carefully to identify their motor control phenotype prior to the onset of treatment may allow practitioners to more efficiently target and proactively treat potential complications of their particular adaptation due to actual or anticipated pain.

KEYWORD LONG TAIL PHRASES: motor control phenotyping may help target treatment for lower back pain patients, motor control adaptations in response to, and in anticipation of pain, common phenotypes that represent the trunk posture and movement of most LBP patients, two most prominent phenotypes of motor function adaptions, reduction in lumbar stiffness and pain after spinal manipulation.

 

Dr. Jerome Fryer (CEO of Dynamic Disc Designs Corp):

“Hello everyone. Dr. Jerome Fryer here of Dynamic Disc Designs. I just want to reach out to those customers that have one of my models. There’s been a lot of talk lately on social media regarding how models can be scary. I don’t know how they’re scary. Models are not scary. It really depends on the user and these models are not intended to scare anybody. It’s to teach them their own anatomy, so they can improve their posture and biomechanics to relieve their symptoms. It’s a team player. It’s like a car. You can go out there ram into people or you can drive defensively and respectfully. Anyway, so one thing that’s important when you’re using the model is to relay realistic biomechanics  and use the model in a way that simulates real-time and load.

You want to use it in a way that actually represents the actual tissue. You can talk about all sorts of things, but you can talk about disc height changes as the disc over the course of the day loses a percentage of its height. You can talk about normal loading patterns of the disc as it relates the associated nerves. But, what I would encourage is just to use real-time forces. For example if someone goes to sit down, they change their lumbar angle and they compress their disc. When they sit for a period of time, the disc actually loses further height. You want to show the subtle endplate angle changes as it relates to the facet joint for example, or in the suspected case of disc herniation, you can actually create a disc herniation.

Single-Level Disc Herniation

Model of Single-Level Disc Herniation.

One example is the changing fluid expression over the course of the day. This is an important little graph to help patients understand how first thing in the morning you’ll actually lose their height very quickly in the disc height, so the facets will actually approximate with the changing intradiscal pressure, and then over the course of the day the disc height will slowly reduce. Some people talk about around 4:00 or 5:00 in the evening as the day progresses, my symptoms become pronounced. Then also with first lie down too. You can see there’s a quick change in disc height. Anyways, I just wanted to share with you that it’s how you use the model and you want to use it in ways that are realistic with regards to movement.”

 

 

 

A new study 1 sought to create an etiology-based system of classification by identifying and characterizing typical endplate irregularities and found that tidemark avulsions were a predominant pathology in the cadaveric spine sample images. This represents a previously unidentified observation and, along with the histologic classification system developed in the study, should assist practitioners in organizing their patients into categories that will help to diagnose, research, and treat their spine symptoms.

 

The Study

Researchers used magnetic resonance imaging (MRI) to analyze and categorize 15 donated human cadaveric spines from 11 males and four females between the ages of 49 to 67 years old. Each of the spine samples showed evidence of moderate to severe disc degeneration. Motion segments were excluded if they appeared with imaging to have experienced pre-mortem surgery, deformity, or fracture. No medical history about the donors was obtained.

Histological Observation

Spinal segments were extracted using a band saw, and their various features were stained with different colors for observation. Each of the sections were imaged with polarized lights under a microscope, and two raters developed a classification system to identify and record various focal tissue-scale endplate irregularities and their anatomical location.

Researchers noticed a novel histological phenomenon wherein there appeared to be a separation of the annulus from the vertebra at the tidemark (the insertion point of outer annular fibers into the calcified layer of cartilage). They immune-stained the “tidemark avulsions” to search for the 9.5 neuronal marker protein gene using a polymer detection system. Each of the slides was then analyzed to identify the presence or absence of nerves in the bone nearest the endplate irregularity.

endplate irregulariities, models

Models to help explain back pain as it relates to endplate irregularities.

MRI Analysis

Each spine was studied via MRI to identify the presence of absence of tidemark avulsions, and their location was noted. Two orthopedic specialist clinicians were used to assess the findings. These researchers—neither of whom was previously used as a rater— were blinded to the histologic findings.

Findings

The endplate irregularities were grouped into three categories based upon their features and location. They were then subcategorized to further classify their pathologies.

The categories and subcategories identified were:

  • Avulsions: There was a separation of the tissue at the place where the disc joined the vertebra. Two types of avulsions were observed—tidemark (separation occurring at the tidemark location, where outer annulus fibers join the layer of calcified cartilage, and CEP-bone avulsion—occurring where the bone meets the cartilage endplate (CEP).
  • Nodes: Traumatic nodes occurred when there was a herniation of the nuclear materials reaching through the endplate. When abnormal fibrocartilage ingrowth or bony erosions were found, the were classified as Erosive.
  • Rim degeneration: This classification was reserved for samples that showed loss of organization in the annular fiber, bone marrow alterations, or degradation of the bone-marrow interface.

Endplate Irregularity Observations

The most common irregularities noted were rim degeneration (50 %) and avulsions (35%). Nodes were less common (15%) and found mostly in the thoracic spine, where the avulsions and rim degenerations were found in the lumbar spine samples. Eighty-seven percent of the noted avulsions were found in the anterior discs.

Though linear regression showed little association between endplate irregularities and age, the largest number of tidemark avulsions (90%) were found in the oldest spine samples. Interestingly, the annular fibers in the tidemark avulsions appeared to change their direction after crossing the tidemark. Of the 35 discs that showed tidemark avulsions, 14 of them contained multiple avulsions. Marrow changes and increased innervation was noted along vertebral bones beside endplate irregularities. An increase of nerve density was observed even in bones adjacent to very small tidemark avulsions.

Conclusion

The ability to identify tidemark avulsions on MRI may help practitioners identify and treat disc-vertebra injuries in a targeted way. High density images in the study showed that fluid can collect around avulsion irregularities, potentially creating gas in the extra-cellular spaces surrounding thee separation. High-intensity regions in MRI may indicate disc delamination or potentially painful lesions.  It is possible that tidemark avulsions may create anterior widening and create a scenario wherein the disc may detach from the vertebra. Overall, the findings of this study should contribute to a beneficial system of classification, allowing clinicians to more effectively diagnose and treat their lower back pain patients.

KEYWORDS: endplate irregularities, tidemark avulsions, endplate pathologies, histologic classification system, separation of the annulus from the vertebra at the tidemark, CEP-bone avulsion, traumatic nodes, rim degeneration

 

patient educational tools

Recent studies12 on the effects of patient education in reducing stress and promoting long-term positive patient outcomes indicate that providing literature and visual aids that clearly describe or demonstrate the patient’s condition can help relieve anxiety and encourage a positive psychological state that fosters better health outcomes. Examples of patient educational tools include illustrated pamphlets, photographs, radiograph images, charts, and finely detailed dynamic design models to provide an overall contextual effect in framing treatment and health expectations.

Reframe Treatment Expectations by Providing Context

Clinicians, chiropractors, and physical therapists who are prepared with effective aids to answer their patients’ questions about disc herniation, bulging discs, disc degeneration, annular fissure, osteoarthritis, stability, hypermobility, nerve pain, sheer instability, neutral loading, recumbency, facet or disc pain, disc height changes with static loads, diurnal changes, and other spinal conditions can look forward to a better patient-practitioner experience, more patient cooperation,  and a better long-term treatment outcome for their patients than those who rely on simple diagnosis and treatment procedures without effective patient education.

Empower Patients with Biopsychosocial Approach

By providing patients with a better understanding of their condition through the use of dynamic models or other visual devices, practitioners improve patient-clinician treatment collaboration and empower patients to take a more active role in their own healing agenda. This biopsychosocial approach to treatment has been shown in studies to generate more positive, long-lasting treatment outcomes and improve relationships between patients and practitioners, fostering trust, communication, and respect.

When practitioners take the time to help patients understand their condition, the patient feels more supported and engaged in the healing process and report being generally happier with their treatment plan. Using a person-centered approach to healing, the practitioner is concerned not only with a patient’s diagnosis and treatment, but is also concerned about the patient’s perception of his diagnosis and treatment experience. This perception, according to studies, is more positive and empowering when the practitioner takes the time to fully address the patient’s concerns and questions and uses visual aids, images, charts, literature, dynamic designs, and other tools to demonstrate what the patient is experiencing and how the treatment will work.

Keywords: dynamic models and other tools in patient education, use of dynamic models or other visual devices, finely detailed dynamic design models, patient educational tools, biopsychosocial approach to treatment, disc herniation, bulging discs, disc degeneration, annular fissure, osteoarthritis, stability, hypermobility, nerve pain, sheer instability, neutral loading, recumbency, facet or disc pain, disc height changes with static loads, diurnal changes

A cross-sectional study 1of the multifidus muscles (MM) and erector spinae muscles of 68 women and 42 men found significantly higher levels of muscles in subjects without disc herniation than in the disc herniation group, indicating that chronic pressure on the root of the spinal nerve may cause degeneration and atrophy of the MM and erector spinae muscles groups.

 

Single-Level Disc Herniation

Model of Single-Level Disc Herniation.

 

The Study

110 LBP patients with an average age of 40 were analyzed and divided into two groups—those with single-level disc degeneration, and those without disc degeneration. Subjects with multilevel degeneration were excluded, as were those with deformities of the spine or a history of spinal surgeries. Both groups were radiographed via MRI at the lumbar levels, and the imaging results were compared to examine the paravertebral muscles, disc heights, and perpendicular distances between the laminae and MM. Statistical analysis using software compared the variables using the Kolmogorov-Smirnov test to investigate data distribution.

Results

The LBP patients without lumbar disc herniation had clinically-significant greater MM and erector spinae muscles than those with radiographically-confirmed disc degeneration. No significant differences existed, however, in the disc heights, perpendicular distances between the MM and the laminae, or the psoas major cross-sectional areas of the two study groups.

Discussion

The MM stabilizes the lumbar spine and, when negatively impacted, contributes to LBP. The muscle group create more force over a smaller range than the longer spine muscle groups, which helps to stabilize movement. The dorsal rami of the spinal nerves stimulates the MM and erector spinae, but the psoas major is stimulated by ventral rami lumbar spinal branches, prior to their joining the lumbar plexus. The medial paraspinal muscles are stimulated from one nerve root, but the iliocostalis and longissimus muscles receives stimulation from many roots. Indications of muscle degeneration include decreased muscle size and increased fat deposits in the area.

Because the MM and erector spinae are stimulated by the dorsal root stemming from a singular level, the chronic and long-lasting pressure on the root due to disc herniation contributes to the degeneration and atrophy of these muscles. This atrophy is not evident in the psoas muscle because it is stimulated by the nerves of many different levels, rather than a singular source. In order for muscle atrophy to occur, there must be at least six weeks of compression, according to this study’s authors.

Conclusion

Evidence of increased fatty deposits and decreased muscle in a cross-sectional lumbar image indicates the existence of muscle degeneration in LBP patients, assuming there has been at least six weeks of compression on the MM or erector spinae muscle groups, which are stimulated by a single nerve root.

 

KEYWORDS: Muscle Degeneration in LBP Patients with Single-Level Disc Herniation, single-level disc degeneration, paravertebral muscles, disc heights, and perpendicular distances between the laminae and MM, pressure on the root due to disc herniation contributes to the degeneration and atrophy of these muscles

  1. Volumetric Muscle Measurements Indicate Significant Muscle Degeneration in Single-Level Disc Herniation Patients
lower back pain

A data review of how education of patients suffering from lower back pain (LBP) in a primary care setting affects their psychological state found moderate-to-high evidence that when primary care physicians provided information on the condition, their patients were reassured and experienced long-term healthy and psychological benefits.

patient education

Although it has been long-established that reassurance from a medical practitioner improves patient outcomes, it is also true that reassuring non-specific illness patients without educating them about their condition can contribute to stress, which can precipitate chronic pain and expensive, recurring health care costs.

Because LBP patients are often discouraged from receiving costly diagnostic imaging tests, they may not experience the reassurance that comes from understanding the source of their pain. Though only 25 percent of physicians in the UK currently order imaging as a matter of course, the number is increasing as the benefits of patient reassurance become more evident.

Another means of patient reassurance involves preplanned educational materials that explain the condition in understandable language. Booklets, diagrams, and dynamic devices that clearly demonstrate the health problem and how it can be treated may have beneficial health and psychological effects on LBP in a clinical setting, but there have been few studies to validate the effectiveness of these intervention methods. The purpose of this systematic review was to examine how patient education would increase reassurance in LBP patients and to determine which method of intervention was most effective.

Methods

A literature review of identified, eligible studies was conducted in November of 2013 and repeated in June of 2014. The studies reviewed involved LBP patient education, advice, reassurance, information, counselling, and consultation in clinical trial settings. Eligibility included LBP adult patients with acute or subacute conditions in clinical trials where more than 70 percent of the patients reported symptoms and where the interventions were conducted in a primary care setting, with at least one patient education element, either written or verbal, that provided reassurance.

Results

The data analysis of the review suggested, with moderate-to-high quality evidence, that patients with LBP are reassured when they receive education about their condition from their primary care provider and that the positive effects of the intervention are still evident at a one-year follow-up consultation. The evidence also showed that receiving education about their LBP during their initial primary care visit reduced the amount of LBP health-care visits over a one-year period. A sub-group review also determined that patients were more reassured when they received education about their condition directly from their physician, rather than from a nurse of a physiotherapist.

Discussion

The results of this review indicate that physicians who can provide their LBP patients with structured, understandable educational materials about their condition are more successful in reassuring their patients, who continue to have lasting health and psychological benefits for up to a year after their initial consultation. Because patients with LBP typically endure numerous costly treatments and may suffer from chronic pain and stress, it would be beneficial for primary care physicians to prepare educational materials that could lead to a more successful treatment outcome and reduced financial burden for their patients.

spine models, patient education, anatomy models

Dynamic spine models – Patient Education for Spine

KEYWORDS: educating lower back pain patients, patients suffering from lower back pain, patient reassurance, patient education, diagnostic imaging tests, psychological effects of LBP